What’s the formula for the volume of a 4-dimensional sphere? If you have that one, can you come up with a formula for the volume of an n-dimensional sphere?

Don’t look it up! It’s a good problem. I highly encourage you to
work on it before looking at my solution.

More specifically, try to come up with an equation which relates the
volume of an n-dimensional sphere to an (n-1) dimensional sphere. You
may not be able to analytically evaluate your equation yourself (I
wasn’t), but it should be something that a computer could solve.

Click to show solution

I took the calculus approach and modeled an n-dimensional sphere as an integral of (n-1)-dimensional spheres. I denoted the volume of an n-dimensional sphere as . For a 3-dimensional sphere, my approach corresponds to following picture:

More generally, my recursive formula is the following system of equations:

which, if you substitute, you get:

Plugging this integral into python (using sympy), and starting with the formula for the “volume” of a “0-dimensional sphere”, i.e. a point, I was able to recursively derive the formulas I recognized for a circle and a sphere and beyond!

Note the formula for the “volume” of a 0-dimensional sphere (point) is .

I tried to find the pattern in these formulas to come up with the closed formula solution, but in the end I gave up and looked at wikipedia, which of course has the solution. I’m not shocked I didn’t find the pattern, it’s non-trivial.

Quick note: The following approach might be a bit more straightforward and also works. However, I couldn’t solve the integral by hand to obtain the (known) formula for a 3-dimensional sphere - and that was how I was checking my work - which is why I went with the approach above.