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1 THE ROCK 
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A. Bill, do you think you've found yourself? 

B. What? 

A. I mean - here we are on the edge of the Indian Ocean, miles 
away from civilization. It's been months since we ran off to 
avoid getting swept up in the system, and "to find ourselves." 
I'm just wondering if you think we've done it. 
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B. Actually, Alice, I've been thinking about the same thing. These 
past months together have been really great-we're completely 
free, we know each other, and we feel like real people again in­
stead of like machines. But lately I'm afraid I've been missing 
some of the things we've "escaped" from. You know, I've got 
this fantastic craving for a book to read - any book, even a 
textbook, even a math textbook. It sounds crazy, but I've been 
lying here wishing I had a crossword puzzle to work on. 

A. Oh, c'mon, not a crossword puzzle; that's what your parents 

like to do. But I know what you mean, we need some mental 
stimulation. It's kinda like the end of summer vacations when 
we were kids. In May every year we couldn't wait to get out of 
school, and the days simply dragged on until vacation started, 
but by September we were real glad to be back in the classroom. 

B. Of course, with a loaf of bread, a jug of wine, and thou beside 
me, these days aren't exactly "dragging on." But I think maybe 
the most important thing I've learned on this trip is that the 
simple, romantic life isn't enough for me. I need something com­
plicated to think about. 

A. Well, I'm sorry I'm not complicated enough for you. Why don't 
we get up and explore some more of the beach? Maybe we'll 
find some pebbles or something that we can use to make up 
some kind of a game. 

B. (sitting up) Yeah, that's a good idea. But first I think I'll take 
a little swim. 

A. (running toward the water) Me, too- bet you can't catch me! 

B. Hey, what's that big black rock half-buried in the sand over 
there? 
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A. Search me, I've never seen anything like it before. Look, it's got 
some kind of graffiti on the back. 

B. Let's see. Can you help me dig it out? It looks like a museum 
piece. Unnh! Heavy, too. The carving might be some old Ara­
bian script ... no, wait, I think it's maybe Hebrew; let's turn it 
around this way. 

A. Hebrew! Are you sure? 

B. Well, I learned a lot of Hebrew when I was younger, and I can 
almost read this. . .. 

A. I heard there hasn't been much archreological digging around 
these parts. Maybe we've found another Rosetta Stone or some­
thing. What does it say, can you make anything out? 

B. Wait a minute, gimme a chance .... Up here at the top right is 

where it starts, something like "In the beginning everything was 
void, and ... " 

A. Far out! That sounds like the first book of Moses, in the Bible. 
Wasn't he wandering around Arabia for forty years with his 
followers before going up to Israel? You don't suppose ... 

B. No, no, it goes on much different from the traditional account. 
Let's lug this thing back to our camp, I think I can work out a 
translation. 

A. Bill, this is wild, just what you needed! 

B. Yeah, I did say I was dying for something to read, didn't I. Al­
though this wasn't exactly what I had in mind! I can hardly 
wait to get a good look at it - some of the things are kinda 
strange, and I can't figure out whether it's a story or what. 
There's something about numbers, and ... 

A. It seems to be broken off at the bottom; the stone was origi­
nally longer. 
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B. A good thing, or we'd never be able to carry it. Of course it'll 
be just our luck to find out the message is getting interesting, 
right when we come to the broken place. 

A. Here we are. I'll go pick some dates and fruit for supper while 
you work out the translation. Too bad languages aren't my 
thing, or I'd try to help you. 

B. Okay, Alice, I've got it. There are a few doubtful places, a cou­
ple signs I don't recognize; you know, maybe some obsolete word 
forms. Overall I think I know what it says, though I don't know 
what it means. Here's a fairly literal translation: 
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In the beginning, everything was void, and J. H. W. H. 
Conway began to create numbers. Conway said, "Let 
there be two rules which bring forth all numbers large 
and small. This shall be the first rule: Every number 

corresponds to two sets of previously created numbers, 
such that no member of the left set is greater than or 
equal to any member of the right set. And the second rule 
shall be this: One number is less than or equal to another 
number if and only if no member of the first number's left 
set is greater than or equal to the second number, and no 

member of the second number's right set is less than or 
equal to the first number." And Conway examined these 
two rules he had made, and behold! They were very good. 

And the first number was created from the void left set 
and the void right set. Conway called this number "zero," 
and said that it shall be a sign to separate positive num­
bers from negative numbers. Conway proved that zero was 
less than or equal to zero, and he saw that it was good. 
And the evening and the morning were the day of zero. 
On the next day, two more numbers were created, one 



with zero as its left set and one with zero as its right set. 
And Conway called the former number "one," and the 
latter he called "minus one." And he proved that minus 
one is less than but not equal to zero and zero is less than 
but not equal to one. And the evening •.. 

That's where it breaks off. 

A. Are you sure it reads like that? 

B. More or less. I dressed it up a bit. 

A. But "Conway" ... that's not a Hebrew name. You've got to 

be kidding. 

B. No, honest. Of course the old Hebrew writing doesn't show 
any vowels, so the real name might be Keenawu or something; 
maybe related to the Khans? I guess not. Since I'm translating 
into English, I just used an English name. Look, here are the 
places where it shows up on the stone. The J. H. W. H. might 
also stand for "Jehovah." 

A. No vowels, eh? So it's real. ... But what do you think it 

means? 

B. Your guess is as good as mine. These two crazy rules for num­
bers. Maybe it's some ancient method of arithmetic that's been 
obsolete since the wheel was invented. It might be fun to figure 
them out, tomorrow; but the sun's going down pretty soon so 
we'd better eat and turn in. 

A. Okay, but read it to me once more. I want to think it over, and 
the first time I didn't believe you were serious. 

B. (pointing) "In the beginning, ... " 
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2 SYMBOLS 



A. I think your Conway Stone makes sense after all, Bill. I was 
thinking about it during the night. 

B. So was I, but I dozed off before getting anywhere. What's the 
secret? 

A. It's not so hard, really; the trouble is that it's all expressed in 
words. The same thing can be expressed in symbols and then 
you can see what's happening. 
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B. You mean we're actually going to use the New Math to decipher 
this old stone tablet. 

A. I hate to admit it, but that's what it looks like. Here, the first 
rule says that every number x is really a pair of sets, called the 

left set XL and the right set XR: 

B. Wait a sec, you don't have to draw in the sand, I think we still 
have a pencil and some paper in my backpack. Just a minute. 

Here, use this. 

A. x = (XL,XR). 

These XL and XR are not just numbers, they're sets of numbers; 
and each number in the set is itself a pair of sets, and so on. 

B. Hold it, your notation mixes me up. I don't know what's a set 
and what's a number. 

A. Okay, I'll use capital letters for sets of numbers and small letters 
for numbers. Conway's first rule is that 

where (1) 

This means if XL is any number in XL and if XR is any number 
in X R , they must satisfy XL i XR. And that means XL is not 
greater than or equal to XR. 

B. (scratching his head) I'm afraid you're still going too fast for 
me. Remember, you've already got this thing psyched out, but 
I'm still at the beginning. If a number is a pair of sets of num­
bers, each of which is a pair of sets of numbers, and so on and 
so on, how does the whole thing get started in the first place? 

A. Good point, but that's the whole beauty of Conway's scheme. 
Each element of XL and XR must have been created previ­
ously, but on the first day of creation there weren't any previous 
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number to work with; so both XL and X R were taken to be the 
empty set! 

B."i: never thought I'd live to see the day when the empty set was 
meaningful. That's really creating something out of nothing, eh? 

But is XL i X R when XL and X R are both equal to the empty 
set? How can you have something unequal itself? 

Oh yeah, yeah, that's okay since it means no element of the 
empty set is greater than or equal to any element of the empty 
set - it's a true statement because there aren't any elements in 
the empty set. 

A. So everything gets started all right, and that's the number 
called zero. Using the symbol 0 to stand for the empty set, we 
can write 

0= (0,0). 

B. Incredible. 

A. Now on the second day, it's possible to use 0 in the left or 
right set, so Conway gets two more numbers 

-1= (0,{O}) and 1 = ({O},0). 

B. Let me see, does this check out? For -1 to be a number, it has 
to be true that no element of the empty set is greater than or 
equal to O. And for 1, it must be that 0 is not greater than 
any element of the empty set. Man, that empty set sure gets 
around! Someday I think I'll write a book called Properties of 

the Empty Set. 

A. You'd never finish. 

If XL or XR is empty, the condition XL i X R is true no matter 
what is in the other set. This means that infinitely many num­
bers are going to be created. 
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B. Okay, but what about Conway's second rule? 

A. That's what you use to tell whether XL i X R, when both sets 
are nonempty; it's the rule defining less-than-or-equal. Symboli­
cally, 

means and (2) 

B. Wait a minute, you're way ahead of me again. Look, XL is a 
set of numbers, and y is a number, which means a pair of sets of 
numbers. What do you mean when you write "XL i y"? 

A. I mean that every element of XL satisfies XL i y. In other 
words, no element of XL is greater than or equal to y. 

B. Oh, I see, and your rule (2) says also that X is not greater than 
or equal to any element of YR. Let me check that with the text. 

A. The Stone's version is a little different, but x ~ y must mean the 

same thing as y 2:: x. 

B. Yeah, you're right. Hey, wait a sec, look here at these carvings 
off to the side: 

e = <:> 
I ::.(e:) 

- (:e> 
These are the symbols I couldn't decipher yesterday, and your 
notation makes it all crystal clear! Those double dots separate 
the left set from the right set. You must be on the right track. 

A. Wow, equal signs and everything! That stone-age carver must 

have used - to stand for -1; I almost like his notation better 
than mine. 
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B. I bet we've underestimated primitive people. They must have 
had complex lives and a need for mental gymnastics, just like 
us-at least when they didn't have to fight for food and shelter. 
We always oversimplify history when we look back. 

A. Yes, but otherwise how could we look back? 

B. I see your point. 

A. Now comes the part of the text I don't understand. On the first 
day of creation, Conway "proves" that 0 ::; O. Why should he 
bother to prove that something is less than or equal to itself, 
since it's obviously equal to itself. And then on the second day 
he "proves" that -1 is not equal to OJ isn't that obvious without 
proof, since -1 is a different number? 

B. Hmmm. I don't know about you, but I'm ready for another 
swim. 

A. Good idea. That surf looks good, and I'm not used to so much 

concentration. Let's go! 
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B. An idea hit me while we were paddling around out there. 
Maybe my translation isn't correct. 

A. What? It must be okay, we've already checked so much of 
it out. 

B. I know; but now that I think of it, I wasn't quite sure of 
that word I translated "equal to." Maybe it has a weaker 
meaning, "similar to" or "like." Then Conway's second rule 
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becomes "One number is less than or like another number if and 
only if .... " And later on, he proves that zero is less than or 
like zero; minus one is less than but not like zero; and so forth. 

A. Oh, right, that must be it, he's using the word in an abstract 
technical sense that must be defined by the rules. So of course 

he wants to prove that 0 is less than or like 0, in order to see 
that his definition makes a number "like" itself. 

B. So does his proof go through? By rule (2), he must show that 
no element of the empty set is greater than or like 0, and that 
o is not greater than or like any element of the empty set. 
. .. Okay, it works, the empty set triumphs again. 

A. More interesting is how he could prove that· -1 is not like O. 

The only way I can think of is that he proved that 0 is not less­
than-or-like -1. I mean, we have rule (2) to tell whether one 
number is less than or like another; and if x is not less-than-or­
like y, it isn't less than y and it isn't like y. 

B. I see, we want to show that 0 ~ -1 is false. This is rule (2) with 
x = 0 and YR = {O}, so 0 ~ -1 if and only if 0 i o. But 0 is 
~ 0, we know that, so 0 $ -1. He was right. 

A. I wonder if Conway also tested -1 against 1; I suppose he did, 

although the rock doesn't say anything about it. If the rules are 
any good, there should be a way to prove that -1 is less than 1. 

B. Well, let's see: -1 is (0, {O}) and 1 is ({0},0), so once again 
the empty set makes -1 ~ 1 by rule (2). On the other hand, 
1 ~ -1 is the same as saying that 0 i -1 and 1 i 0, according 
to rule (2), but we know that both of these are false. Therefore 
1 $ -1, and it must be that -1 < 1. Conway's rules seem to be 
working. 

A. Yes, but so far we've been using the empty set in almost every 
argument, so the full implications of the rules aren't clear yet. 
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Have you noticed that almost everything we've proved so far 
can be put into a framework like this: "If X and Yare any 
sets of numbers, then x = (0, X) and y = (Y,0) are numbers, 
and x:::; y." 

B. It's neat the way you've just proved infinitely many things, 
by looking at the pattern I used in only a couple of cases. 
I guess that's what they call abstraction, or generalization, or 
something. But can you also prove that your x is strictly less 

than y? That was true in all the simple cases and I bet it's true 
in general. 

A. Vh huh ... Well no, not when X and Y are both empty, since 

that would mean 0 ~ O. But otherwise it looks very interesting. 
Let's look at the case when X is the empty set and Y is not 

empty; is it true that 0 is less than (Y,0)? 

B. If so, then I'd call (Y,0) a "positive" number. That must be 
what Conway meant by zero separating the positive and nega­
tive numbers. 

A. Yes, but look. According to rule (2), we will have (Y,0) :::; 0 
if and only if no member of Y is greater than or like O. So if, 

for example, Y is the set {-I}, then (Y,0) :::; O. Do you want 
positive numbers to be :::; O? 

Too bad I didn't take you up on that bet. 

B. Hmm. You mean (Y,0) is going to be positive only when Y 
contains some number that is zero or more. I suppose you're 
right. But at least we now understand everything that's on the 
stone. 

A. Everything up to where it's broken off. 

B. You mean ... ? 

A. I wonder what happened on the third day. 
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B. Yes, we should be able to figure that out, now that we know the 
rules. It might be fun to work out the third day, after lunch. 

A. You'd better go catch some fish; our supply of dried meat is 
getting kinda low. I'll go try and find some coconuts. 
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B. I've been working on that Third Day problem, and I'm 
afraid it's going to be pretty hard. When more and more 
numbers have been created, the number of possible sets goes 
up fast. I bet that by the seventh day, Conway was ready for 
a rest. 

A. Right. I've been working on it too and I get seventeen numbers 
on the third day. 
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B. Really? I found nineteen; you must have missed two. Here's my 
list: 

(:> (-:) <e:) (I:> <-e:) 
(-I:> <el:) (-el:) (:-) (:e) 
<:1) (:-e) (:-1) (:.1) (:-el) 
(-:e) (e:l) (-e:,) (-: •. ) 

A. I see you're using the Stone's notation. But why did you include 

( : )? That was created already on the first day. 

B. Well, we have to test the new numbers against the old, in order 
to see how they fit in. 

A. But I only considered new numbers in my list of seventeen, so 
there must actually be twenty different at the end of the third 

day. Look, you forgot to include 

<-:1) 
in your list. 

B. (blinking) So I did. Hmm ... 20 by 20, that's 400 different cases 
we'll have to consider in rule (2). A lot of work, and not much 
fun either. But there's nothing else to do, and I know it'll bug 
me until I know the answer. 

A. Maybe we'll think of some way to simplify the job once we get 
started. 

B. Yeah, that would be nice .... 

Well, I've got one result, 1 is less than ({1},0). First I had to 

prove that 0 i ({I}, 0). 
A. I've been trying a different approach. Rule (2) says we have 

to test every element of XL to see that it isn't greater than or 
like y, but it shouldn't be necessary to make so many tests. If 
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any element of XL is ~ y, then the largest element of XL ought 
to be ~ y. Similarly, we need only test x against the smallest 

element of YR. 

B. Yeah, that ought a be right .... I can prove that 1 is less than 

({O, I}, 0) just like I proved it was less than ({I}, 0); the extra 
"0" in XL didn't seem to make any difference. 

A. If what I said is true, it will save us a lot of work, because each 

number (XL, X R ) will behave in all :::; relations exactly as if XL 

were replaced by its largest element and XR by its smallest. We 
won't have to consider any numbers in which XL or X R have 

two or more elements; ten of those twenty numbers in the list 
will be eliminated! 

B. I'm not sure I follow you, but how on earth can we prove such a 
thing? 

A. What we seem to need is something like this: 

if and y:::; z, then x:::; z. (Tl) 

I don't see that this follows immediately, although it is consis­
tent with everything we know. 

B. At any rate, it ought to be true, if Conway's numbers are to be 
at all decent. We could go ahead and assume it, but it would 
be neat to show once and for all that it is true, just by using 
Conway's rules. 

A. Yes, and we'd be able to solve the Third Day puzzle without 
much more work. Let's see, how can it be proved? ... 

B. Blast those flies! Just when I'm trying to concentrate. Alice, 
can you - no, I guess I'll go for a little walk. 

Any progress? 
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A. No, I seem to be going in circles, and the i versus:::; is confus­
ing. Everything is stated negatively and things get incredibly 
tangled up. 

B. Maybe (Tl) isn't true. 

A. But it has to be true. Wait, that's it! We'll try to disprove it. 
And when we fail, the cause of our failure will be a proof! 

B. Sounds good - it's always easier to prove something wrong than 
to prove it right. 

A. Suppose we've got three numbers x, y, and z for which 

X:::; y, and y:::; z, and x $ z. 

What does rule (2) tell us about "bad numbers" like this? 

B. It says that 

XL iy, 

and XiYR, 

and Y L i z, 

and yi ZR, 

and then also x $ z, which means what? 

A. It means one of the two conditions fails. Either there is a num­

ber XL in XL for which XL ~ z, or there is a number ZR in ZR 

for which X ~ ZR. With all these facts about x, y, and z, we 
ought to be able to prove something. 

B. Well, since XL is in XL, it can't be greater than or like y. Say 
it's less than y. But y :::; Z, so XL must be ... no, sorry, I can't 
use facts about numbers we haven't proved. 

Going the other way, we know that y :::; z and z :::; XL and 
y $ XL; so this gives us three more bad numbers, and we can 
get more facts again. But that looks hopelessly complicated. 
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A. Bill! You've got it. 

B. Have I? 

A. If (x, y, z) are three bad numbers, there are two possible cases. 

Case 1, some XL ~ z: Then (y,z,XL) are three more bad num­
bers. 

Case 2, some ZR ~ x: Then (ZR,X,y) are three more bad num­
bers. 

B. But aren't you still going in circles? There's more and more bad 
numbers all over the place. 

A. No, in each case the new bad numbers are simpler than the 
original ones; one of them was created earlier. We can't go on 
and on finding earlier and earlier sets of bad numbers, so there 
can't be any bad sets at all! 

B. (brightening) Oho! What you're saying is this: Each num-
ber x was created on some day d( x). If there are three bad 

numbers (x,y,z), for which the sum of their creation days is 
d(x) + d(y) + d(z) = n, then one of your two cases applies and 
gives three bad numbers whose day-sum is less than n. Those, 
in turn, will produce a set whose day-sum is still less, and so on; 
but that's impossible since there are no three numbers whose 
day-sum is less than 3. 

A. Right, the sum of the creation days is a nice way to express 
the proof. If there are no three bad numbers (x, y, z) whose 
day-sum is less than n, the two cases show that there are none 
whose day-sum equals n. I guess it's a proof by induction on 
the day-sum. 

B. You and your fancy words. It's the idea that counts. 

A. True; but we need a name for the idea, so we can apply it more 
easily next time. 

B. Yes, I suppose there will be a next time .... 
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Okay, I guess there's no reason for me to be uptight any more 
about the New Math jargon. You know it and I know it, we've 
just proved the transitive law. 

A. (sigh) Not bad for two amateur mathematicians! 

B. It was really your doing. I hereby proclaim that the transitive 
law (Tl) shall be known henceforth as Alice's Theorem. 

A. C'mon. I'm sure Conway discovered it long ago. 

B. But does that make your efforts any less creative? I bet every 
great mathematician started by rediscovering a bunch of "well 
known" results. 

A. Gosh, let's not get carried away dreaming about greatness! Let's 
just have fun with this. 

26 



5 PROGRESS 



~ ..... l!.A ... t,. .... ~ t ....... 
, ~' ... t ., 

B. I just thought of something. Could there possibly be two num­
bers that aren't related to each other at all? I mean 

and 

like one of them is out of sight or in another dimension or some­
thing. It shouldn't happen, but how would we prove it? 
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A. I suppose we could try the same technique that worked before. 
If x and yare bad numbers in this sense, then either some 

XL 2:: y or X 2:: some YR· 

B. Hmm. Suppose y ~ XL. Then if XL ~ X, we would have y ~ X 

by our transitive law, and we have assumed that y $ x. SO 

XL $ x. In the other case, YR ~ x, the same kind of figuring 
would show that Y $ YR. 

A. Hey, that's very shrewd! All we have to do now, to show that 
such a thing can't happen, is prove something I've suspected for 

a long time. Every number X must lie between all the elements 
of its sets XL and X R . I mean, 

and (T2) 

B. That shouldn't be hard to prove. What does XL $ X say? 

A. Either there is a number XLL in XLL, with XLL 2:: x, or else 
there is a number XR in XR with XL 2:: XR. But the second case 
can't happen, by rule (1). 

B. I knew we were going to use rule (1) sooner or later. But what 
can we do with XLL? I don't like double subscripts. 

A. Well, XLL is an element of the left set of XL. Since XL was cre­
ated earlier than x, we can at least assume that X LL ~ XL, by 
induction. 

B. Lead on. 

A. Let's see, XLL ~ XL says that XLLL i XL and ... 

B. (interrupting) I don't want to look at this -your subscripts are 
getting worse. 

A. You're a big help. 

B. Look, I am helping, I'm telling you to keep away from those 
hairy subscripts! 
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A. But I . .. Okay, you're right, excuse me for going off on such a 
silly tangent. We have x :::; XLL and XLL :::; XL, so the transitive 
law tells us that X :::; XL. This probably gets around the need for 
extra subscripts. 

B. Aha, that does it. We can't have X :::; XL, because that would 

mean XL ~ XL, which is impossible since XL is one of the ele­
ments of XL. 

A. Good point, but how do you know that XL :::; XL. 

B. What? You mean we've come this far and haven't even proved 
that a number is like itself? Incredible . .. there must be an 
easy proof. 

A. Maybe you can see it, but I don't think it's obvious. At any 
rate, let's try to prove 

X:::; x. 

This means that XL ~ X and X ~ X R • 

(T3) 

B. It's curiously like (T2). But uh-oh, here we are in the same spot 
again, trying to show that X :::; XL is impossible. 

A. This time it's all right, Bill. Your argument shows that X :::; XL 

implies XL ~ XL, which is impossible by induction. 

B. Beautiful! That means (T3) is true, so everything falls into 
place. We've got the "XL:::; X" half of (T2) proved-and the 
other half must follow by the same argument, interchanging left 
and right everywhere. 

A. And like we said before, (T2) is enough to prove that all num­

bers are related; in other words 

if then y:::; x. (T4) 
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B. Right. Look, now we don't have to bother saying things so indi­

rectly any more, since "x ~ y" is exactly the same as "x is less 
than y." 

A. I see, it's the same as "x is less than or like y but not like y." 

We can now write 

x<y 

in place of x ~ y, and the original rules (1) and (2) look much 

nicer. I wonder why Conway didn't define things that way? 

Maybe it's because a third rule would be needed to define what 

"less than" means, and he probably wanted to keep down the 

number of rules. 

B. I wonder if it's possible to have two different numbers that are 

like each other. I mean, can we have both x ~ y and x ~ y 

when XL is not the same as YL? 

A. Sure, we saw something like that before lunch. Don't you re­

member, we found that 0 ~ y and y ~ 0 when y = ({-1},0). 
And I think ({O, I}, O) will turn out to be like ({I}, O). 

B. You're right. When x ~ y and x ~ y, I guess x and yare effec­

tively equal for all practical purposes, because the transitive law 

tells us that x ~ z if and only if y ~ z. They're interchangeable. 

A. Another thing, we've also got two more transitive laws. I mean 

if 

if 

x<y 

x~y 

and 

and 

y ~ z, 

y < z, 

then 

then 

x < z; 

x < z. 

(T5) 

(T6) 

B. Very nice-in fact, these both follow immediately from (Tl), if 

we consider "x < y" equivalent to "x ~ y." There's no need to 

use (T2), (T3), or (T4) in the proofs of (T5) and (T6). 

A. You know, when you look over everything we've proved, it's 

really very pretty. It's amazing that so much flows out of Con­
way's two rules. 
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B. Alice, I'm seeing a new side of you today. You really put to rest 
the myth that women can't do mathematics. 

A. Why, thank you, gallant knight! 

B. I know it sounds crazy, but working on this creative stuff with 
you makes me feel like a stallion! You'd think so much brain­
work would turn off any physical desires, but really - I haven't 
felt quite like this for a long time. 

A. To tell the truth, neither have I. 

B. Look at that sunset, just like in the poster we bought once. And 
look at that water. 

A. (running) Let's go! 
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6 THE THIRD DAY 
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B. Boy, I never slept so well. 

A. Me too. It's so great to wake up and be really awake, not just 

"coffee-awake." 

B. Where were we yesterday, before we lost our heads and forgot all 
about mathematics? 

A. (smiling) I think we had just proved that Conway's numbers 
behave like all little numbers should; they can be arranged in a 
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line, from smallest to largest, with every number being greater 
than those to its left and less than all those on its right. 

B. Did we really prove that? 

A. Yes. Anyway the unlike numbers keep in line, because of (T4). 
Every new number created must fall into place among the oth­
ers. 

B. Now it should be pretty easy for us to figure out what hap­
pened on the Third Day; those 20 x 20 calculations must be 
reduced 'way down. Our theorems (T2) and (T3) show that 

(:-> < - < (-:e> <e< (e:,) < I < <I:) 
so seven of the numbers are placed already and it's just a matter 
of fitting the others in. 

You know, now that it's getting easier, this is much more fun 
than a crossword puzzle. 

A. We also know, for example, that 

(-:,) 
lies somewhere between - and ,. Let's check it against the 
middle element, zero. 

B. Hmm, it's both ~ and ~ 0, so it must be like 0, according to 
rule (2). As I said yesterday, it's effectively equal to 0, so we 
might as well forget it. That's eight down and twelve to go. 

A. Let's try to get rid of those ten cases where XL or X R have 
more than one element, like I tried to do yesterday morning. 
I had an idea during the night, which might work. Suppose 
x = (XL,XR ) is a number, and we take any other sets of num­
bers YL and YR , where 
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Then I think it's true that x is like z, where 

In other words, enlarging the sets XL and XR, by adding num­
bers on the appropriate sides, doesn't really change x. 

B. Let's see, that sounds plausible. At any rate, z is a number, 
according to rule (1); it will be created sooner or later. 

A. In order to show that z ~ x, we have to prove that 

and z<XR • 

But that's easy, now, since we know that XL < x, YL < x, and 
z < X R U YR, by (T3). 

B. And the same argument, interchanging left and right, shows that 
x ~ z. You're right, it's true: 

if YL < x < YR, 

then (T7) 

(I'm going to write "x == z," meaning "x is like z"; I mean 
x ~ z and z ~ x.) 

A. That proves just what we want. For example, 

(-e:l> == (e:I>, (:-e> == (:-) 

and so on. 

B. So we're left with only two cases: (-: > and <: I ) . 
A. Actually, (T7) applies to both of them, too, with x = O! 

B. Cle-ver. So the Third Day is now completely analyzed; only 
those seven numbers we listed before are essentially different. 
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A. I wonder if the same thing won't work for the following days, 
too. Suppose the different numbers at the end of n days are 

Xl < X2 < ... < Xm · 

Then maybe the only new numbers created on the (n + l)st day 
will be 

B. Alice, you're wonderful! If we prove this, it will solve infinitely 
many days in one swoop! You'll get ahead of the Creator him­

self. 

A. But maybe we can't prove it. 

B. Anyway let's try some special cases. Like, what if we had the 

number ({xi-d,{xi+d); it would have to be equal to one of 
the others. 

A. Sure, it equals Xi, because of (T7). Look, each element of X iL is 

~ Xi-I, and each element of X iR is ~ Xi+!. Therefore, by (T7) 
we have 

And again by (T7), 

By the transitive law, Xi == ({xi-d,{Xi+d). 

B. (shaking his head) Incredible, Holmes! 

A. Elementary, my dear Watson. One simply uses deduction. 

B. Your subscripts aren't very nice, but I'll ignore them this time. 

What would you do with the number ({xi-d, {xj+d) if i < j? 
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A. (shrugging her shoulders) I was afraid you'd ask that. I don't 
know. 

B. Your same argument would work beautifully if there was a num­

ber x where each element of XL is :::; Xi-l and each element of 

X R is 2: Xj+l. 

A. Yes, you're right, I hadn't noticed that. But all those elements 

Xi, X i+l, ... , x j in between might interfere. 

B. I suppose so ... No, I've got it! Let x be the one of Xi, Xi+l, 
... , Xj that was created first. Then XL and XR can't involve 

any of the others! So ({xi-d,{xj+d) == x. 

A. Allow me to give you a kiss for that. 

B. (smiling) The problem isn't completely solved, yet; we have to 

consider numbers like (0, {xj+d) and ({xi-d,0). But in the 
first case, we get the first-created number of Xl, X2, ... , Xj. 
And in the second case it's the first-created number of Xi, 
Xi+l, ... , Xm · 

A. What if the first-created number wasn't unique? I mean, what 
if more than one of the Xi, ... , Xj were created on that earli­
est day? 

B. Whoops ... No, it's okay, that can't happen, because the proof 
is still valid and it would show that the two numbers are both 
like each other, which is impossible. 

A. Neato! You've solved the problem of all the days at once. 

B. With your help. Let's see, on the fourth day there will be 8 new 
numbers, then on the fifth day there are 16 more, and so on. 

A. Yes, after the nth day, exactly 2n - 1 numbers will have been 
created. 
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B. You know, I don't think that guy Conway was so smart after 
all. I mean, he could have just given much simpler rules, with 
the same effect. There's no need to talk about sets of numbers, 
and all that nonsense; he simply would have to say that the new 
numbers are created between existing adjacent ones, or at the 
ends. 

C. Rubbish. Wait until you get to infinite sets. 

A. What was that? Did you hear something? It sounded like thun­

der. 

B. I'm afraid we'll be getting into the monsoon season pretty soon. 
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7 DISCOVERY 
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A. Well, we've solved everything on that rock, but I can't help 
feeling there's still a lot missing. 

B. What do you mean? 

A. I mean, like we know what happened on the third day; four 
numbers were created. But we don't know what Conway 
called them. 
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B. Well, one of the numbers was bigger than 1, so I suppose he 
called it "2." And another was between 0 and 1, so maybe he 

called it "!." 
A. That's not the point. What really bothers me is, why are they 

numbers? I mean, in order to be numbers you have to be added, 
subtracted, and that sort of thing. 

B. (frowning) I see. You think Conway gave some more rules, in 
the broken-off part of the rock, which made the numbers numer­
ical. All we have is a bunch of objects ordered neatly in a line, 
but we haven't got anything to do with them. 

A. I don't think I'm clairvoyant enough to guess what he did. If he 
did do something. 

B. That means we're stuck-unless we can find the missing part 

of that rock. And I don't even remember where we found the 
first part. 

A. Oh, I remember that; I was careful to note exactly where it was 
in case we ever wanted to go back. 

B. What would I ever do without you? Come on, let's go! 

A. Hey wait, don't you think we should have a little lunch first? 

B. Right, I got so wrapped up in this I forgot all about food. Okay, 
let's grab a quick bite and then start digging. 

A. (digging) Oh, Bill, I'm afraid this isn't going to work. The dirt 
under the sand is so hard, we need special tools. 

B. Yeah, just scraping away with this knife isn't getting us very 
far. Uh oh - here comes the rain, too. Should we dash back to 
camp? 
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A. Look, there's a cave over by that cliff. Let's wait out the storm 
in there. Hey, it's really pouring! 

B. Sure is dark in here. Ouch! I stubbed my toe on something. Of 
all the ... 

A. Bill! You've found it! You stubbed your toe on the other part of 
the Conway Stone! 

B. (wincing) Migosh, it look's like you're right. Talk about fate! 
But my toe isn't as pleased about it as the rest of me is. 

A. Can you read it, Bill? Is it really the piece we want, or is it 
something else entirely? 

B. It's too dark in here to see much. Help me drag it out in the 
rain, the water will wash the dust off and ... 

Yup, I can make out the words "Conway" and "number," so it 
must be what we're looking for. 

A. Oh, good, we'll have plenty to work on. We're saved! 

B. The info we need is here all right. But I'm going back in the 
cave, it can't keep raining this hard for very long. 

A. (following) Right, we're getting drenched. 

B. I wonder why this mathematics is so exciting now, when it was 
so dull in school. Do you remember old Professor Landau's lec­
tures? I used to really hate that class: Theorem, proof, lemma, 
remark, theorem, proof, what a total drag. 

A. Yes, I remember having a tough time staying awake. But look, 
wouldn't our beautiful discoveries be just about the same? 
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B. True. I've got this mad urge to get up before a class and present 
our results: Theorem, proof, lemma, remark. I'd make it so 
slick, nobody would be able to guess how we did it, and every­
one would be so impressed. 

A. Or bored. 

B. Yes, there's that. I guess the excitement and the beauty comes 
in the discovery, not the hearing. 

A. But it is beautiful. And I enjoyed hearing your discoveries al­
most as much as making my own. So what's the real difference? 

B. I guess you're right, at that. I was able to really appreciate 
what you did, because I had already been struggling with the 
same problem myself. 

A. It was dull before, because we weren't involved at all; we were 
just being told to absorb what somebody else did, and for all we 
knew there was nothing special about it. 

B. From now on whenever I read a math book, I'm going to try to 
figure out by myself how everything was done, before looking at 
the solution. Even if I don't figure it out, I think I'll be able to 
see the beauty of a proof then. 

A. And I think we should also try to guess what theorems are com­
ing up; or at least, to figure out how and why anybody would 
try to prove such theorems in the first place. We should imagine 
ourselves in the discoverer's place. The creative part is really 
more interesting than the deductive part. Instead of concen­
trating just on finding good answers to questions, it's more im­
portant to leam how to find good questions! 

B. You've got something there. I wish our teachers would give us 
problems like, "Find something interesting about x," instead of 
"Prove x." 

A. Exactly. But teachers are so conservative, they'd be afraid of 
scaring off the "grind" type of students who obediently and 
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mechanically do all the homework. Besides, they wouldn't like 
the extra work of grading the answers to nondirected questions. 

The traditional way is to put off all creative aspects until the 
last part of graduate school. For seventeen or more years, stu­
dents are taught examsmanship; then suddenly after passing 
enough exams in graduate school they're told to do something 
original. 

B. Right. I doubt if many of the really original students have stuck 
around that long. 

A. Oh, I don't know, maybe they're original enough to find a way 
to enjoy the system. Like putting themselves into the subject, as 

we were saying. That would make the traditional college courses 
tolerable, maybe even fun. 

B. You always were an optimist. I'm afraid you're painting too rosy 
a picture. But look, the rain has stopped. Let's lug this rock 
back to camp and see what it says. 
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8 ADDITION 



A. The two pieces fit pretty well, it looks like we've got almost the 
whole message. What does it say? 

B. This part is a little harder to figure out - there are some ob-
scure words - but I think it goes like this: 

.•• day. And Conway said, "Let the numbers be added 
to each other in this wise: The left set of the sum of two 
numbers shall be the sums of all left parts of each number 
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with the other; and in like manner the right set shall be 
from the right parts, each according to its kind." Conway 
proved that every number plus zero is unchanged, and 
he saw that addition was good. And the evening and the 
morning were the third day. 

And Conway said, "Let the negative of a number have as 
its sets the negatives of the number's opposite sets; and 
let subtraction be addition of the negative." And it was 
so. Conway proved that subtraction was the inverse of 
addition, and this was very good. And the evening and 
the morning were the fourth day. 

And Conway said to the numbers, "Be fruitful and mul­
tiply. Let part of one number be multiplied by another 
and added to the product of the first number by part of 
the other, and let the product of the parts be subtracted. 
This shall be done in all possible ways, yielding a number 
in the left set of the product when the parts are of the 
same kind, but in the right set when they are of opposite 
kinds." Conway proved that every number times one is 
unchanged. And the evening and the morning were the 
fifth day. 

And behold! When the numbers had been created for 
infinitely many days, the universe itself appeared. And 
the evening and the morning were N day. 

And Conway looked over all the rules he had made for 
numbers, and saw that they were very, very good. And 
he commanded them to be for signs, and series, and quo­
tients, and roots. 

Then there sprang up an infinite number less than infinity. 
And infinities of days brought forth multiple orders of 

infinities. 



That's the whole bit. 

A. What a weird ending. And what do you mean "aleph day"? 

B. Well, aleph is a Hebrew letter and it's just standing there by 
itself, look: N. It seems to mean infinity. 

Let's face it, it's heavy stuff and it's not going to be easy to 
figure out what this means. 

A. Can you write it all down while I fix supper? It's too much for 
me to keep in my head, and I can't read it. 

B. Okay-that'll help me get it clearer in my own mind too. 

A. It's curious that the four numbers created on the third day 
aren't mentioned. I still wonder what Conway called them. 

B. Maybe if we try the rules for addition and subtraction we could 
figure out what the numbers are. 

A. Yeah, if we can figure out those rules for addition and subtrac­
tion. Let's see if we can put the addition rule into symbolic 
form, in order to see what it means. ... I suppose "its own 

kind" must signify that left goes with left, and right with right. 
What do you think of this: 

B. Looks horrible. What does your rule mean? 

A. To get the left set of x + y, you take all numbers of the form 

XL + y, where XL is in XL, and also all numbers YL + X where YL 

is in YL. The right set is from the right parts, "in like manner." 

B. I see, a "left part" of x is an element of XL. Your symbolic 
definition certainly seems consistent with the prose one. 

A. And it makes sense too, because each' XL + Y and YL + X ought 
to be less than x + y. 
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B. Okay, I'm willing to try it and see how it works. I see you've 
called it rule (3). 

A. Now after the third day, we know that there are seven numbers, 
which we might call 0, 1, -1, a, b, c, and d. 

B. No, I have an idea that we can use left-right symmetry and call 

them 

-a < -1 < -b < 0 < b < 1 < a, 

where 

-a= (:-) 

-1=-=(:_> 
-b= <-:_> 

0=<:> 

(,:> = a 

<_:)=1=1 
<_:.> =b -

A. Brilliant! You must be right, because Conway's next rule is 

(4) 

B. So it is! Okay--now we can start adding these numbers. Like, 
what's 1 + 1, according to rule (3)? 

A. You work on that, and I'll work on 1 + a. 

B. Okay,Iget ({0+1,0+1},0). AndO+1is ({0+0},0);0+Ois 
(O, O) = O. Everything fits together, making 1 + 1 = ({I}, O) = a. 
Just as we thought, a must be 2! 

A. Congratulations on coming up with the world's longest proof 
that 1 + 1 is 2. 

B. Have you ever seen a shorter proof? 

A. Not really. Look, your calculations help me too. I get 1 + 
2 = ({ 2}, 0), a number that isn't created until the fourth day. 
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B. I suggest we call it "3." 

A. Bravo. So rule (3) is working; let's check if b is ~ by calculating 

b + b ... 

B. Hmm, that's odd, it comes out to ({b}, {b + I}), which hasn't 
been created yet. 

A. And b + 1 is ({b,1},{2}), which is like ({1},{2}), which is 
created on the fourth day. So b + b appears on the fifth day. 

B. Don't tell me b + b is going to be equal to another number we 
don't know the name of. 

A. Are we stuck? 

B. We worked out a theory that tells us how to calculate all num­
bers that are created, so we should be able to do this. Let's 
make a table for the first four days. 

A. Oh, Bill, that's too much work. 

B. No, it's a simple pattern really. Look: 

Day 1 

Day 2 

Day 3 -2 

-1 

Day 4 -3 -(HI) 

I 

o 

-b 

-c -d 

1 

b 

d c HI 

I 

A. Oh I see, so b + b is ({b}, {b + I}), which is formed from 
non-adjacent numbers ... and our theory says it is the 
earliest-created number between them. 

2 

B. (beaming) And that's 1, because 1 makes the scene before c. 

A. So b is ~ after all, although its numerical value wasn't estab­
lished until two days later. It's amazing what can be proved 

3 
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from those few rules-they all hang together so tightly, it bog­
gles the mind. 

B. I'll bet d is ~ and c is ~. 

A. But the sun is going down. Let's sleep on it, Bill; we've got lots 
of time and I'm really drained. 

B. (muttering) d + c = .... Oh, all right. G'night. 
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9 THE ANSWER 



A. Are you awake already? 

B. What a miserable night! I kept tossing and turning, and my 
mind was racing in circles. I dreamed I was proving things 
and making logical deductions, but when I woke up they were 
all foolishness. 

A. Maybe this mathematics isn't good for us after all. We were so 
happy yesterday, but-

57 



B. (interrupting) Yeah, yesterday we were high on math, but today 
it's turning sour. I can't get it out of my system, we've got to 
get more results before I can rest. Where's that pencil? 

A. Bill, you need some breakfast. There are some apricots and figs 
over there. 

B. Okay, but I've gotta get right to work. 

A. Actually I'm curious to see what happens too, but promise me 

one thing. 

B. What? 

A. We'll only work on addition and subtraction today; not multipli­
cation. We won't even look at that other part of the tabl~t until 
later. 

B. Agreed. I'm almost willing to postpone the multiplication indefi-
nitely, since it looks awfully complicated. 

A. (kissing him) Okay, now relax. 

B. (stretching) You're so good to me, Alice. 

A. That's better. Now I was thinking last night about how you 
solved the problem about all the numbers yesterday morning. 
I think it's an important principle that we ought to write down 
as a theorem. I mean: 

Given any number y = (YL, YR), if x is the first 
number created with the property that YL < x (T8) 

and x < YR, then x == y. 

B. Hmm, I guess that is what we proved. Let's see if we can recon­
struct the proof, in this new symbolism. As I recall we looked 

at the number z = (XL U YL, XR U YR), for which we had 
x == z by (T7). On the other hand, no element XL of XL sat­
isfies YL < XL, since XL was created before x, and X is supposed 
to be the oldest number with YL < x and x < YR. Therefore 
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each XL is :::; some YL, by (T4). Thus XL < Y, and similarly 

Y < XR· So Y == z by (T7). 

It's pretty easy to work out the proof now that we have all this 

ammunition to work with. 

A. The nice thing about (T8) is that it makes the calculation we 

did last night much easier. Like when we were calculating b + 
b = ({ b}, {b + I}), we could have seen immediately that 1 is the 

first number created between {b} and {b + I}. 

B. Hey, let me try that on C + c: It's the first number created 

between b + c and 1 + c. Well, it must be b + 1, I mean 1~, 
. 3 

SOCIS 4 · 

That's a surprise, I thought it would be ~. 

A. And d is ~. 

B. Right. 

A. I think the general pattern is becoming clear now: After four 

days the numbers ~ 0 are 

0, ~, ~, ~, 1, ~, 2, 3 

and after five days they will probably be-

B. (interrupting) 

A. Exactly. Can you prove it? 

B. 

Yes, but not so easily as I thought. For example, to figure out 

the value of f = ({H, {2}), which turned out to be ~, I calcu­

lated f + f. This is the first number created between 3 and 4, 

and I had to "look ahead" to see that it was ~. I'm convinced 
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we have the right general pattern, but it would be nice to have a 
proof. 

A. On the fourth day we calculated ~ by knowing that it was 1 + !, 
not by trying ~ +~. Maybe adding 1 will do the trick. 

B. Let's see .... According to the definition, rule (3), 

assuming that 0 + x = x. In fact, isn't it true that ... sure, for 
positive numbers we can always choose XL so that 1 + XL has 
an element;::: x, so it simplifies to 

in this case. 

A. That's it, Bill! Look at the last eight numbers on the fifth day, 
they are just one greater than the eight numbers on the fourth 
day. 

B. A perfect fit. Now all we have to do is prove the pattern for the 
numbers between 0 and 1 ... but that can always be done by 
looking at x + x, which will be less than 2! 

A. Yes, now I'm sure we've got the right pattern. 

B. What a load off my mind. I don't even feel the need to formal­
ize the proof now; I know it's right. 

A. I wonder if our rule for 1 + x isn't a special case of a more gen­
eral rule. Like isn't 

That would be simpler than Conway's complicated rule. 
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B. Sounds logical, since adding y should "shift" things over by y 

units. Whoops, no, take x = 1; that would say y + 1 is ({y}, 0), 
which fails when y is ~. 

A. Sorry. In fact, your rule for 1 + x doesn't work when x = 0 
either. 

B. Right, I proved it only when x is positive. 

A. I think we ought to look at rule (3), the addition rule, more 
closely and see what can be proved in general from it. All 
we've got are names for the numbers. These names must be 
correct if Conway's numbers behave like actual numbers, but we 
don't know that Conway's rules are really the same. Besides, I 
think it's fun to derive a whole bunch of things from just a few 
basic rules. 

B. Let's see. In the first place, addition is obviously what we might 

call commutative, I mean 

x+y = y+x. (T9) 

A. True. Now let's prove what Conway claimed, that 

x+O = x. (TlO) 

B. The rule says that 

x + 0 = (XL + 0, X R + 0). 

So all we do is a "day of creation" induction argument, again; 
we can assume that XL + 0 is the same as XL, and XR + 0 is 
X R , since all those numbers were created before x. Q.E.D. 

A. Haven't we proved that x + 0 == x, not = x? 

B. You're a nit-picker, you are. I'll change (TlO) if you want me to, 
since it really won't make any difference. But doesn't the proof 
actually show that x + 0 is identically the same pair of sets as x? 
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A. Excuse me again. You're right. 

B. That's ten theorems. Should we try for more while we're hot? 
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10 THEOREMS 



A. How about the associative law, 

(x + y) + z = x + (y + z). (TIl) 

B. Oh, I doubt if we'll need that; it didn't come up in the calcu­
lations. But I suppose it won't hurt to try it, since my math 
teachers always used to think it was such a great thing. 
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One associative law, coming right up. Can you work out the 
definition? 

A. (x+y)+z 

= (( (XL + y) + z) U ((YL + X) + z) U (Z L + (X + y)), 

((XR + y) + z) U ((YR + x) + z) U (ZR + (x + y))) 

X+(y+Z) 

= ((XL + (y + Z)) U ((YL + Z) + x) U ((ZL + y) + x), 

(XR + (y + Z)) U ((YR + Z) + x) U ((ZR + y) + x)). 

B. You're really good at these hairy formulas. But how can such 
monstrous things be proved equal? 

A. It's not hard, just using a day-sum argument on (x, y, z) as we 

did before. See, (XL + y) + z = XL + (y + z) because (XL, y, z) 
has a smaller day-sum than (x, y, z), and we can induct on that. 
The same for the other five sets, using the commutative law in 
some cases. 

B. Congratulations! Another Q.E.D., and another proof of "=" 
instead of "=:." 

A. That =: worries me a little, Bill. We showed that we could sub­
stitute like elements for like elements, with respect to < and ~, 
but don't we have to verify this also for addition? I mean, 

if x=:y, then x + z =: y + z. (T12) 

B. I suppose so; otherwise we wouldn't strictly be allowed to make 
the simplifications we've been making in our names for the 
numbers. As long as we're proving things, we might as well 
do it right. 

A. In fact, we might as well prove a stronger statement, 

if x ~ y, then x +z ~ y + z, (T13) 
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because this will immediately prove (T12). 

B. I see, because x == y if and only if x :::; y and y :::; x. Also (T13) 
looks like it will be useful. Shouldn't we also prove more, I mean 

if and w:::; z, 

then x + w :::; y + z? 

A. Oh, that follows from (T13), since x + w :::; y + w = w + y :::; z + 
y = y + z. 

B. Okay, that's good, because (T13) is simpler. Well, you're the 
expert on formulas, what is (T13) equivalent to? 

A. Given that XL < y and x < Y R , we must prove that XL + Z < 
Y + Z, ZL + X < y + Z, x + Z < Y R + z, and x + Z < ZR + y. 

B. Another day-sum induction, eh? Really, these are getting too 
easy. 

A. Not quite so easy, this time. I'm afraid the induction will only 

give us XL + Z :::; y + z, and so on; it's conceivable that XL < y 

but XL + Z == Y + z. 
B. Oh yeah. That's interesting. What we need is the converse, 

if x + z:::; Y + z, then x:::; y. (T14) 

A. Brilliant! The converse is equivalent to this: Given that 

XL + Z < y + Z, ZL + X < y + z, x + Z < YR + z, and 
x + Z < ZR + y, prove that XL < y and x < YR' 

B. Hmm. The converse would go through by induction - except 

that we might have a case with, say, XL + Z < y + Z but XL == y. 

Such cases would be ruled out by (T13), but ... 

A. But we need (T13) to prove (T14), and (T14) to prove (T13). 
And (T13) to prove (T12). 

B. We're going around in circles again. 

67 



A. Ah, but there's a way out, we'll prove them both together! We 
can prove the combined statement "(T13) and (T14)" by induc­
tion on the day-sum of (x, y, z)! 

B. (glowing) Alice, you're a genius! An absolutely gorgeous, tanta­
lizing genius! 

A. Not so fast, we've still got work to do. We had better show that 

x -x = o. (T15) 

B. What's that minus sign? We never wrote down Conway's rule 
for subtraction. 

A. x - y = x + (-y). (5) 

B. I notice you put the = in (T15); okay, it's clear that x + (-x) 
won't be identically equal to 0, I mean with empty left and right 
sets, unless x is O. 

A. Rules (3), (4), and (5) say that (T15) is equivalent to this: 

((XL + (-x)) U (( -XR) + x), 

(XR+(-x))U((-XL)+x)) =0. 

B. Uh oh, it looks hard. How do we show something = 0 anyway? 

... By (T8), y = 0 if and only if YL < 0 and 0 < YR, since 0 was 
the first created number of all. 

A. The same statement also follows immediately from rule (2); 
I mean, y :5 0 if and only if YL < 0, and 0 :5 y if and only if 
o < YR. So now what we have to prove is 

and 
XL + (-x) < 0, 

XR + (-x) > 0, 

and 
and 

for all XL in XL and all XR in X R. 
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B. Hmm. Aren't we allowed to assume that XL + (-XL) == 0 and 

XR + (-XR) == O? 

A. Yes, since we can be proving (TI5) by induction. 

B. Then I've got it! If XL + (-x) were ~ 0, then (-X)R + XL 
would be > 0, by definition. But (-X)R is -(XL)' which con­
tains -XL, and (-xL) +XL is not> O. Therefore XL +( -X) must 
be < 0, and the same technique works for the other cases too. 

A. Bravo! That settles (TI5). 

B. What next? 

A. How about this? 

-(-X) = x. (TI6) 

B. Sssss. That's trivial. Next? 

A. All I can think of is Conway's theorem, 

(X+y)-y==X. (TI7) 

B. What's that equivalent to? 

A. It's a real mess .... Can't we prove things without going back 
to the definitions each time? 

B. Aha! Yes, it almost falls out by itself: 

(X+y) -y = (x+y) +(-y) 
=x+(y+(-y)) 
= X + (y - y) 
==x+O 
=X 

by (5) 

by (Tll) 
by (5) 
by (TI2) and (TI5) 
by (TlO). 

We've built up quite a pile of useful results-even the associa­
tive law has come in handy. Thanks for suggesting it against my 
better judgment. 
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A. Okay, we've probably exhausted the possibilities of addition, 
negation, and subtraction. There are some more things we could 
probably prove, like 

- (x +y) = (-x) + (-y), 

if x:::; y, then -y:::; -x, 

(T18) 

(T19) 

but I don't think they involve any new ideas; so there's little 
point in proving them unless we need 'em. 

B. Nineteen theorems, from just a few primitive rules. 

A. Now you must remember your promise: This afternoon we take 
a vacation from mathematics, without looking at the rest of the 
stone again. I don't want that horrible multiplication jazz to 
rob you of any more sleep. 

B. We've done a good day's work, anyhow-all the problems are 
resolved. Look, the tide's just right again. Okay-the last one 
into the water has to cook supper! 
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11 THE PROPOSAL 



A. That sure was a good supper you cooked. 

B. (lying down beside her) Mostly because of the fresh fish you 

caught. 

What are your thinking about now? 

A. (blushing) Well, actually I was wondering what would happen if 
I got pregnant. 
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B. You mean, here we are, near the Fertile Crescent, and ... ? 

A. Very funny. And after all our work to prove that 1 + 1 = 2 we'll 

discover that 1 + 1 = 3. 

B. Okay, you win, no more jokes. But come to think of it, Con­
way's rules for numbers are like copulation, I mean the left set 
meeting the right set, ... 

A. You've got just one thing-no, two things-on your mind. But 
seriously, what would we do if I really were pregnant? 

B. Well, I've been thinking we'd better go back home pretty soon 
anyway; our money's running out, and the weather is going to 
get bad. 

Actually, I really want to marry you in any case, whether you're 
pregnant or not. If you'll have me, of course. 

A. That's just what I feel too. This trip has proved that we're 
ready for a permanent relationship. 

I wonder. .. When our children grow up, will we teach them our 
theory of numbers? 

B. No, it would be more fun for them to discover it for themselves. 

A. But people can't discover everything for themselves; there has to 
be some balance. 

B. Well, isn't all learning really a process of self-discovery? Don't 
the best teachers help their students to think on their own? 

A. In a way, yes. Whew, we're getting philosophical. 

B. I still can't get over how great I feel when I'm doing this crazy 
mathematics; it really turns me on right now, but I used to 
hate it. 

A. Yes, I've been high on it, too. I think it's a lot better than 
drugs; I mean, the brain can stimulate itself naturally. 

B. And it was kind of an aphrodisiac, besides. 
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A. (gazing at the stars) One nice thing about pure mathematics­
the things we proved today will never be good for anything, 
so nobody will be able to use them to make bombs or stuff 
like that. 

B. Right. But we can't be in an ivory tower all the time, either. 
There are lots of problems in the world, and the right kind of 
math might help to solve them. You know, we've been away 
from newspapers for so long, we've forgotten all the problems. 

A. Yeah, sometimes I feel guilty about that ... 

Maybe the right kind of mathematics would help solve some of 
these problems, but I'm worried that it could also be misused. 

B. That's the paradox, and the dilemma. Nothing can be done 
without tools, but tools can be used for bad things as well as 
good. If we stop creating things, because they might be harmful 
in the wrong hands, then we also stop doing useful things. 

A. Okay, I grant you that pure mathematics isn't the answer to 
everything. But are you going to abolish it entirely just because 

it doesn't solve the world's problems? 

B. Oh no, don't misunderstand me. These past few days have 
shown me that pure mathematics is beautiful-it's an art form 
like poetry or painting or music, and it turns us on. Our natural 
curiosity has to be satisfied. It would destroy us if we couldn't 

have some fun, even in the midst of adversity. 

A. Bill, it's good to talk with you like this. 

B. I'm enjoying it too. It makes me feel closer to you, and sort of 

peaceful. 
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12 DISASTER 
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B. Are you awake already? 

A. About an hour ago I woke up and realized that there's a big, 
gaping hole in what we thought we proved yesterday. 

B. No! 

A. Yes, I'm afraid so. We forgot to prove that x + y is a number. 
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B. You're kidding. Of course it's a number, it's the sum of two 
numbers! Oh wait, I see ... we have to check that rule (1) is 
satisfied. 

A. Yes, the definition of addition isn't legitimate unless we can 

prove that XL + y < XR + y, and XL + Y < YR + x, and 

YL + X < X R + y, and YL + X < YR + x. 

B. These would follow from (T13) and (T14), but ... I see your 
point, we proved (T13) and (T14) assuming that the sum of two 
numbers is a number. How did you ever think of this problem? 

A. Well, that's kind of interesting. I was wondering what would 
happen if we defined addition like this: 

I called this EB because it wasn't obviously going to come out 

the same as +. But it was pretty easy to see that EB was a com­
mutative and associative operation, so I wanted to see what it 

turned out to be. 

B. I see; the sum of x and y lies between XL + YL and X R + YR, so 
this definition might turn out to be simpler than Conway's. 

A. But my hopes were soon dashed, when I discovered that 

OEBx=O 

for all x. 

B. Ouch! Maybe EB means multiplication? 

A. Then I proved that 1 EB x = 1 for all x > 0, and 2 EB x = 2 for all 
x> 1, and 3 EB x = 3 for all x > 2, and ... 

B. I see. For all positive integers m and n, m EB n is the minimum 
of m and n. That's commutative and associative, all right. So 
your EB operation did turn out to be interesting. 
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A. Yes, and !EEl! = !. But then I tried (-!)EEl!, and I was stopped 
cold. 

B. You mean ... ? 

I see, (-!) EEl ! = ({(-I) EEl a}, {a EEl I}), which is ({a}, {a}). 

A. And that's not a number. It breaks rule (1). 

B. So your definition of EEl wasn't legit. 

A. And I realized that you can't just go making arbitrary defini­
tions; they have to be proved consistent with the other rules too. 
Another problem with EEl was, for example, that ({-I}, 0) == a 
but ({-I},0)EEll~aEEl1. 

B. Okay, EEl is out, but I suppose we can fix up the real definition 

of +. 
A. I don't know; what I've just told you is as far as I got. Except 

that I thought about pseudo-numbers. 

B. Pseudo-numbers? 

A. Suppose we form (XL, X R ) when XL is not necessarily < X R . 

Then rule (2) can still be used to define the ~ relation between 
such pseudo-numbers. 

B. I see ... like ({I},{a}) turns out to be less than 2. 

A. Right. And I just noticed that our proof of the transitive law 
(Tl) didn't use the i part of rule (1), so that law holds for 
pseudo-numbers too. 

B. Yes, I remember saying that the full rule (1) wasn't used until 
(T2). That seems like a long time ago. 

A. Now get ready for a shock. The pseudo-number ({ 1 }, {a}) is 

neither ~ a nor ~ a! 
B. Far out! 

A. Yes, I think I can prove that ({I}, {a}) is ~ a number y if and 
only if y > 1, and it is ~ a number x if and only if x < a. It's 
not related at all to any numbers between a and 1. 
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B. Where's the pencil? I want to check that out .... I think you're 
right. This is fun, we're proving things about quantities that 
don't even exist. 

A. Well, do pseudo-numbers exist any less than Conway's numbers? 
What you mean is, we're proving things about quantities that 
are purely conceptual, without familiar real-world counterparts 
as aids to understanding. ... Remember that A was once 
thought of as an "imaginary" number, and vI2 wasn't even con­
sidered to be "rational." 

B. Conway's rule for adding ordinary numbers also gives us a 
way to add pseudo-numbers. I wonder what this leads to? If 

x = ({l},{O}), then 1 +x is ... ({2},{1}). 

A. And x + x is ({I + x}, {x}), a second-order pseudo-number. 

B. Pure mathematics is a real mind-expander. 

But did you notice that ({l},{O}) isn't even:::; itself? 

A. Let's see; x :::; x means that XL < x < X R , so this could only be 

true if XL < X R . 

No, wait, we aren't allowed to use "<" in place of "i" for 
pseudo-numbers, since (T4) isn't true in general. We have to go 
back to the original rule (2), which says that x :::; x if and only if 

XL i x and x i X R · So ({l},{O}) is ~ itself after all. 

B. Touche! I'm glad I was wrong, since every x ought to be like 
itself, even when it's a pseudo-number. 

A. Maybe there is some more complicated pseudo-number that 
isn't:::; itself. It's hard to visualize, because the sets XL and 
X R might include pseudo-numbers too. 

B. Let's look back at our proof of (T3) and see if it breaks down. 

A. Good idea. ... Hey, the same proof goes through for all pseudo­
numbers: x is always like x. 
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B. This is great but I'm afraid it's taking us away from the main 
problem, whether or not + is well-defined. 

A. Well, our proofs of x + y = y + x and x + 0 = x work for 
pseudo-numbers as well as numbers, and so does our proof of 
the associative law. If the inequality theorems (T13) and (T14) 
also go through for pseudo-numbers, then + will be well-defined. 

B. I see, that's beautiful! So far we've established (Tl), (T3), (T5), 
(T6), (T9), (TlO), and (Tll) for all pseudo-numbers. Let's look 
at (T13) again. 

A. But I'm afraid. .. uh, oh, Bill! We were too gullible yesterday 
in our acceptance of that day-sum proof for (T13) and (T14); it 
was too good to be true. 

B. What do you mean? 

A. We were proving that Z L + X < y + z by induction, right? Well, 
to get this it takes two steps, first Z L + X :::; Z L + y and then 

ZL+Y < z+y. Induction gives us the first part all right, but the 
second part involves (ZL' Z, y), which might have a larger day­

sum than (x, y, z). 

B. So we really blew it. Conway would be ashamed of us. 

A. Good thing we didn't see this yesterday, or it would have spoiled 
our day. 

B. I guess it's back to the drawing boards ... but hey, we've gotta 

eat some breakfast. 
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13 RECOVERY 



A. We've missed lunch, Bill. 

B. (pacing the ground) Have we? This stupid problem is driving 
me up the wall. 

A. Just staring at this paper isn't helping us any, either. We need a 
break; maybe if we ate something-

B. What we really need is a new idea. Gimme an idea, Alice. 
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A. (beginning to eat) Well, when we were going around in circles 
like this before, how did we break out? The main thing was 
to use induction, I mean to show that the proof in one case 
depended on the truth in a previous case, which depended on 
a still previous case, and so on, where the chain must eventually 
come to an end. 

B. Like our day-sum argument. 

A. Right. The other way we broke the circle was by proving more 

than we first thought we needed. I mean, in order to keep the 
induction going, we had to keep proving several things simulta­
neously. 

B. Like when you combined (T13) and (T14). Okay, Alice, right af­
ter lunch I'm going to sit down and write out the total picture, 
everything we need to prove, and perhaps even more. And I'm 
going to try and prove everything simultaneously by induction. 
The old battering-ram approach. If that doesn't work, noth-

ing will. 

A. That sounds hard but it's probably the best way. Here, have 
some oat cakes. 

B. Okay, here we go. We want to prove three things about num­
bers, and they all seem to depend on each other. 

I(x, y): 

II(x,y,z): 

III(x,y,z): 
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x + y is a number. 

if x ~ y, then x + z ~ y + z. 

if x + z ~ y + z, then x ~ y. 



Now if I'm not mistaken, the proof of I(x, y) will follow if we 
have previously proved 

III(XR' XL, y), 

III(x, XL, y), 

III(y, YL,X), 

III(YR, YL, X). 

II(y, YR, x), 

II(x, XR, y), 

For example, we have to prove among other things that 

XL + y < YR + x. In other words, for all XL in XL and YR in YR 
we should have previously established that XL + Y < y R + x. Now 
III(x, XL, y) and (T3) show that XL + Y < X + y, and II(y, YR, x) 
shows that y + x::; YR + x. Right? 

A. It looks good; except I don't see why you included those first 

four, I(XL' y) through I(x, YR). I mean, even if XL + y wasn't 
a number, that wouldn't matter; all we really need to know is 
that XL and y themselves are numbers. After all, < and ::; are 
defined for pseudo-numbers, and the transitive laws work too. 

B. No, rule (1) says that elements of the left part like XL+Y have to 
be numbers. Anyway it doesn't really matter, because if we're 

proving I(x,y) we can assume I(XL'Y) and so on for free; induc­
tion takes care of them. 

A. It's complicated, but keep going, this looks promising. 

B. This approach has to work, or we're sunk. Okay, the proof of 
II(x, y, z), namely (T13), will follow if we have previously proved 

III(y, XL, z), 

II(x, y, ZL), 

III(YR,x,z), 

II(x, y, ZR), 

III(Z,ZL,Y), 

III(ZR' Z, x). 

85 



That's curious-this one really doesn't require I(x,y). How 
come we thought we'd have to prove that the sum of two num­
bers is a number, before proving (T13)? 

A. That was before we knew much about pseudo-numbers. It's 
strange how a fixed idea will remain as a mental block! 

Remember? This was the first reason we said it was going to 
be hard to prove x + y is a number, because we thought (T13) 
depended on this. After learning that pseudo-numbers satisfy 
the transitive laws, we forgot to reconsider the original source of 
trouble. 

B. So at least this big-picture method is getting us somewhere, 
if only because it helps organize our thoughts. 

Now it's two down and one to go. The proof of III(x, y, z) de­
pends on knowing 

II(y, XL, z), 

II(YR,x,z). 

A. Again, I(x, y) wasn't required. So we can simply prove (T13) 
and (T14) without worrying whether or not x + y is a number. 

B. I see-then later, x + y will turn out to be a number, because of 
(T13) and (T14). Great! 

A. Now II and III depend on each other, so we can combine them 
into a single statement like we did before. 

B. Good point. Let's see, if I write IV(x, y, z) to stand for the com­

bined statement "II(x,y,z) and III(x,y,z)," my lists show that 
IV(x, y, z) depends on 
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IV(y, XL, z), 

IV(YR,X,Z), 

IV(x, y, ZL), 

IV(x, y, ZR), 

IV(z, ZL, y), 

IV(ZR' Z, x). 



I think it was a good idea to introduce this new notation, like 
I(x,y) and so on, because it makes the patterns become clearer. 
Now all we have to do is find some way to rig up an induction 
hypothesis that goes from these six things to IV ( x, y, z). 

A. But uh-oh, it doesn't work. Look IV(x, y, z) depends on 
IV(z, ZL, y), which depends on IV(YR, y, z), which depends 
on IV(z, ZL, y) again; we're in a loop. It's the same stupid 
problem I noticed before, and now we know it's critical. 

B. (pounding the dirt) Oh no! ... Well, there's one more thing 
I'll try before giving up. Let's go all the way and prove a more 
general version of (T13): 

V(x,x',y,y'): if x ~ x' and y ~ y', then x + y ~ x' + y'. 

This is what we really are using in our proofs, instead of doing 
two steps with (T13). And it's symmetrical; that might help. 

A. We'll also need a converse, generalizing (T14). 

B. I think what we need is 

VI(x, x', y, y'): if x + y ~ x' + y' and y ~ y', then x ~ x'. 

A. Your notation, primes and all, looks very professional. 

B. (concentrating) Thank you. Now the proof of V (x, x' , y, y') de­
pends on 

VI(XL' x', y, y'), 

VI(YL, y', x, x'), 

VI(x, Xk, y, y'), 

VI(y, Yk, x, x'). 

Hey, this is actually easier than the other one, the symmetry is 
helping. 
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Finally, to prove VI(x, x', y, y'), we need ... the suspense is 
killing me, I can't think ... 

V(x, XLy, y'), V(XR,x',y,y'). 

A. (jumping up) Look, a day-sum argument, applied to the combi­
nation of V and VI, now finishes the induction! 

B. (hugging her) We've won! 

A. Bill, I can hardly believe it, but our proof of these two state­

ments actually goes through for all pseudo-numbers x, x', 
y, and y'. 

B. Alice, this has been a lot of work, but it's the most beautiful 

thing I ever saw. 

A. Yes, we spent plenty of energy on what we both took for granted 

yesterday. 

I wonder if Conway himself had a simpler way to prove those 

laws? Maybe he did, but even so I like ours because it taught us 

a lot about proof techniques. 

B. Today was going to be the day we studied multiplication. 

A. We'd better not start it now, it might ruin our sleep again. 

Let's just spend the rest of the afternoon working out a proof 

that -x is a number, whenever x is. 

B. Good idea, that should be easy now. And I wonder if we 

can prove something about the way negation acts on pseudo­
numbers? 
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B. (stretching) Good morning, love; did you think of any more 
mistakes in our math, during the night? 

A. No, how about you? 

B. You know I never look for mistakes. But a thought did strike 
me: Here we're supposed to have rules for creating all the num­
bers, but actually l never appears. Remember, I was expecting 
to see it on the fourth day, but that number turned out to be !. 
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I kind of thought, well, l is a little slow in arriving, but it will 
get here sooner or later. Just now it hit me that we've analyzed 
all the numbers, but l has never showed. 

A. All the numbers that are created have a finite representation in 
the binary number system. I mean like 3~ is 11.101 in binary. 
And on the other hand, every number with a finite binary repre­
sentation does get created, sooner or later. Like, 3~ was created 
on the . .. eighth day. 

B. Binary numbers are used on computers. Maybe Conway was 
creating a computerized world. 

What is the binary representation of l anyway? 

A. I don't know, but it must have one. 

B. Oh, I remember, you sort of do long division but with base 2 
instead of 10. Let's see ... I get 

l = .0101010101 ... 

and so on ad infinitum. It doesn't terminate, that's why it 
wasn't created. 

A. "Ad infinitum." That reminds me of the last part of the inscrip­
tion. What do you suppose the rock means about N day and all 
that? 

B. It sounds like some metaphysical or religious praise of the num­
ber system to me. Typical of ancient writings. 

On the other hand, it's sort of strange that Conway was still 
around and talking, after infinitely many days. "Till the end of 
time," but time hadn't ended. 

A. You're in great voice today. 

B. After infinitely many days, I guess Conway looked out over all 
those binary numbers he had created, and . .. Omigosh! I bet 
he didn't stop. 
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A. You're right! I never thought of it before, but the Stone does 
seem to say that he went right on. And . .. sure, he gets more 
numbers, too, because for the first time he can choose XL and 
XR to be infinite sets. 

B. Perhaps time doesn't flow at a constant rate. I mean, to us the 
days seem like they're of equal length; but from Conway's point 
of view, as he peers into our universe, they might be going faster 

and faster in some absolute extra-celestial time scale. Like, the 
first earth day lasts one heavenly day, but the second earth day 
lasts only half a heavenly day, and the next is one fourth, and 
so on. Then, after a total of two heavenly days, zap! Infinitely 
many earth days have gone by, and we're ready to go on. 

A. I never thought of that, but it makes sense. In a way, we're now 
exactly in Conway's position after infinitely many earth-days 
went by. Because we really know everything that transpired, up 
until N day. 

B. (gesticulating) Another plus for mathematics: Our finite minds 
can comprehend the infinite. 

A. At least the count ably infinite. 

B. But the real numbers are uncountable, and we can even compre­
hend them. 

A. I suppose so, since every real number is just an infinite decimal 
expansion. 

B. Or binary expansion. 

A. Hey! I know now what happened on N day - the real numbers 

were all created! 

B. (eyes popping) Migosh. I believe you're right. 

A. Sure; we get! by taking XL to be, say, 

{.01, .0101, .010101, .01010101, ... } 
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in binary notation, and X R would be numbers that get closer 
and closer to ! from above, like 

{.1, .011, .01011, .0101011, ... }. 

B. And a number like 7r gets created in roughly the same way. 
I don't know the binary representation of 7r, but let's say it's 

7r = 11.00100100001111 ... ; 

we get Ih by stopping at every "1," 

IlL = {11.001, 11.001001, 11.00100100001, ... } 

and I1R by stopping at every "0" and increasing it, 

I1R = {ILl, 11.01, 11.0011, 11.00101, ... }. 

A. There are lots of other sets that could be used for IlL and I1R, 

infinitely many in fact. But they all produce numbers equivalent 
to this one, because it is the first number created that is greater 
than IlL and less than I1R . 

B. (hugging her again) So that's what the Conway Stone means 
when it says the universe was created on N day: The real num­
bers are the universe. 

Have you ever heard of the "big bang" theory the cosmologists 
talk about? This is it, N day: Bang! 

A. (not listening) Bill, there's another number also created on N 
day, a number that's not in the real number system. Take X R 

to be empty, and 

XL = {I, 2, 3, 4, 5, ... }. 

This number is larger than all the others. 

94 



B. Infinity! Outa sight! 

A. I think I'll denote it by the Greek letter w since I always liked 
that letter. Also -w was created, I mean minus infinity. 

B. N day was a busy, busy day. 

A. Now the next day-

B. You mean N wasn't the end! 

A. Oh no, why should Conway stop then? I have a hunch he was 
only barely getting started. The process never stops, because 
you can always take XR empty and XL to be the set of all num­
bers created so far. 

B. But there isn't much else to do on the day after N, since the 
real numbers fit together so densely. The noninfinite part of 
the universe is done now, since there's no room to put any more 
numbers in between two "adjacent" real numbers. 

A. No, Bill; that's what I thought too, until you said it just now. 
I guess it just proves that I like to argue with you. How about 

taking XL = {O} and XR = {l,~,!, i, ~, ... }. It's a number 
greater than zero and less than all positive real numbers! We 
might call it €. 

B. (fainting) Ulp ... That's okay, I'm all right. But this is almost 
too much; I mean, there's gotta be a limit. 

What surprises me most is that your number € was actually 
created on N day, not the day after, because you could have 

taken XR = {l,~, i,~, l6'·.·}· Also, there are lots of other 
crazy numbers in there, like 

which is just a hair bigger than l. 

And I suppose there's a number like this right next to all num­

bers, like 7r ••• no, that can't be ... 
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A. The one just greater than 11' doesn't come until the day after N. 
Only terminating binary numbers get an infinitely close neigh­
bor on N day. 

B. On the day after N we're also going to get a number between 

o and E. And you think Conway was just getting started. 

A. The neatest thing, Bill, is that we not only have the real num­
bers and infinity and all the in-betweens ... we also have rules 
for telling which of two numbers is larger, and for adding and 
subtracting them. 

B. That's right. We proved all these theorems, thinking we already 
knew what we were proving-it was just a game, to derive all 
the old standard laws of arithmetic from Conway's few rules. 
But now we find that our proofs apply also to infinitely many 
unheard-of cases! The numbers are limited only by our imagina­
tion, and our consciousness is expanding, and ... 

A. You know, all this is sort of like a religious experience for me; 
I'm beginning to get a better appreciation of God. Like He's 
everywhere ... 

B. Even between the real numbers. 

A. C'mon, I'm serious. 
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15 INFINITY 
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B. I've been doing a few calculations with infinity. Like, rule (3) 
tells us immediately that 

w + 1 = ({w,2,3,4,5, ... }, O), 

which simplifies to 

w+l=({w},0). 
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A. That was created on the day after N day. 

B. Right, and 

w+2:: ({w+l},0) 

on the day after. Also, 

w+~::({w},{w+l}). 

A. What about w - I? 

B. w - I! I never thought of subtracting from infinity, because a 
number less than infinity is supposed to be finite. But, let's 
grind it out by the rules and see what happens. ... Look at 

that, 

w-l:: ({1,2,3,4, ... }, {w}). 

Of course - it's the first number created that is larger than all 
integers, yet less than w. 

A. So that's what the Stone meant about an infinite number less 
than infinity. 

Okay, I've got another one for you, what's w + 7r? 

B. Easy: 

w + 7r:: (w + Ih, w + IIR). 

This was created on . " (2N) day! And so were w + E and w - E. 

A. Oho! Then there must also be a number 2w. I mean, w + w. 

B. Yup, 

w +w = ({w + l,w +2,w + 3,w +4, ... }, 0). 

I guess we can call this 2w, even though we don't have multi­
plication yet, because we'll certainly prove later on that (x + 
y)z :: xz + yz. That means 2z :: (1 + l)z :: z + z. 
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A. Right, and 

3w = ({2w + 1, 2w + 2, 2w + 3, 2w + 4, ... }, 0) 

will be created on (3N) day, and so on. 

B. We still don't know about multiplication, but I'm willing to bet 
that w times w will turn out to be 

w2 = ({w,2w,3w,4w, ... }, 0). 

A. Created on N2 day. Just imagine what Conway must be doing to 
all the smaller numbers during this time. 

B. You know, Alice, this reminds me of a contest we used to have 
on our block when I was a kid. Every once in a while we'd start 
shouting about who knows the largest number. Pretty soon one 
of the kids found out from his dad that infinity was the largest 
number. But I went him one better by calling out "infinity plus 
one." Well, the next day we got up to infinity plus infinity, and 

soon it was infinity times infinity. 

A. Then what happened? 

B. Well, after reaching "infinityfinityfinityfinity ... ," repeated as 
long as possible without taking a breath, we sort of gave up the 

contest. 

A. But there are plenty more numbers left. Like 

And still we're only at the beginning. 

B. You mean, there's wW'" , wW"'''' , and the limit of this, and so on. 

Why didn't I think of that when I was a kid? 

A. It's a whole new vista .... But I'm afraid our proofs aren't 

correct any more, Bill. 
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B. What? Not again. We already fixed them. 

Oh-oh, I think I see what you're getting at. The day-sums. 

A. Right. We can't argue by induction on the day-sums because 
they might be infinite. 

B. Maybe our theorems don't even work for the infinite cases. It 
sure would be nice if they did, of course. I mean, what a feel­
ing of power to be proving things about all these numbers we 

haven't even dreamed of yet. 

A. We didn't have any apparent trouble with our trial calculations 
on infinite numbers. Let me think about this for awhile. 

It's okay, I think we're okay, we don't need "day-sums." 

B. How do you manage it? 

A. Well, remember how we first thought of induction in terms of 
"bad numbers." What we had to show was that if a theorem 
fails for x, say, then it also fails for some element XL in XL, and 
then it also fails for some XLL in XLL, and so on. But if every 
such sequence is eventually finite - I mean if eventually we must 
reach a case with XLL ... L empty-then the theorem can't have 
failed for x in the first place. 

B. (whistling) I see. For example, in our proof that x + 0 = x, 

we have x + 0 = (XL + 0, X R + 0). We want to assume by 
induction that XL + 0 has been proved equal to XL for all XL 

in XL. If this assumption is false, then XLL + 0 hasn't been 
proved equal to XLL for some XLL; or, I guess, some XLR might 
be the culprit. Any counterexample would imply an infinite 
sequence of counterexamples. 

A. All we have to do now is show that there is no infinite ancestral 
sequence of numbers 
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such that Xi+! is in X iL U X iR. 

B. That's a nice way to put it. 

A. Also, it's true, because every number (in fact, every pseudo­
number) is created out of previously created ones. Whenever we 
create a new number x, we can prove simultaneously that there 
is no infinite ancestral sequence starting with Xl = X, because 
we have previously proved that there's no infinite sequence that 
proceeds from any of the possible choices of X2 in XL or X R • 

B. That's logical, and beautiful ... But it almost sounds like you're 
proving the validity of induction, by using induction. 

A. I suppose you're right. This must actually be an axiom of some 
sort, it formalizes the intuitive notion of "previously created" 
that we glossed over in rule (1). Yes, that's it; rule (1) will be 
on a rigorous footing if we formulate it in this way. 

B. What you've said covers only the one-variable case. Our day­
sum argument has been used for two, three, even four variables, 
where the induction for (x, y, z) relies on things like (y, z, xL) 
and so on. 

A. Exactly. But in every case, the induction went back to some 
permutation of the variables, with at least one of them getting 
an additional L or R subscript. Fortunately, this means that 
there can't be any infinite chain such as 

(x,y,z) --t (y,z,xL) --t (ZR,y,XL) --t ... , 

and so on; if there were, at least one of the variables would have 
an infinite ancestral chain all by itself, contrary to rule (1). 

B. (hugging her once again) Alice, I love you, in infinitely many 
ways. 

A. (giggling) "How do I love thee? Let me count the ways." 
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B. It still seems that we have gotten around this infinite induction 
in a sneaky and possibly suspicious way. Although I can't see 
anything wrong with your argument, I'm still leery of it. 

A. As I see it, the difference is between proof and calculation. 
There was no essential difference in the finite case, when we 
were just talking about numbers created before day N. But now 
there is a definite distinction between proof and the ability to 
calculate. There are no infinite ancestral sequences, but they 
can be arbitrarily long, even when they start with the same 
number. For example, W, n, n - 1, ... , 1, a is a sequence of 
ancestors of w, for all n. 

B. Right. I've just been thinking about the ancestral sequences of 
w2 • They're all finite, of course; but they can be so long, the 
finiteness isn't even obvious. 

A. This unbounded finiteness means that we can make valid proofs, 

for example, that 2 x 11' = 11' + 11', but we can't necessarily 
calculate 11' + 11' in a finite number of steps. Only God can finish 
the calculations, but we can finish the proofs. 

B. Let's see, 11' + 11' = (11' + Ih, 11' + IIR ), which ... Okay, I see, there 
are infinitely many branches of the calculations but they all are 
at a finite distance from the starting point. 

A. The neat thing about the kind of induction we've been using is 
that we never have to prove the "initial case" separately. The 
way I learned induction in school, we always had to prove P(l) 
first, or something like that. Somehow we've gotten around this. 

B. You know, I think I understand the real meaning of induction 
for the first time. And I can hardly get over the fact that all 
of our theory is really valid, for the infinite and infinitesimal 
numbers as well as the finite binary ones. 

A. Except possibly (T8), which talks about the "first number cre­
ated" with a certain property. I suppose we could assign a num-
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ber to each day, like say the largest number created on that day, 
and order the days that way ... 

B. I sort of follow you. I've noticed that a number seems to be the 
largest created on its day when X R is empty and XL is all the 
previously created numbers. 

A. Maybe that explains why there was N day and (N + 1) day, but 
no (N - 1) day. 

B. Yeah, I guess, but this is all too deep for me. I'm ready to 
tackle multiplication now, aren't you? 
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16 MULTIPLICATION 



A. Let's see that paper where you wrote down Conway's rule for 
multiplication. There must be a way to put it in symbols . 
... It's complicated, but we already know what he means by 
"part of the same kind." 

B. Alice, this is too hard. Let's try to invent our own rule for mul­
tiplication instead of deciphering that message. 
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Why don't we just do like he did for addition. I mean, xy 

should lie between XLY U xYL and XRy U xYR. At least, it 
ought to do this when negative numbers are excluded. 

A. But that definition would be identical to addition, so the prod­
uct would turn out to be the same as the sum. 

B. Whoops, so it would. ... All right, I'm ready to appreciate 
Conway's solution, let's look at that paper. 

A. Don't feel bad about it, you've got exactly the right attitude. 
Remember what we said about always trying to do things by 
ourselves first? 

B. Hah, I guess that's one lesson we've learned. 

A. The best I can make out is that Conway chooses the left set of 
xy to be all numbers of the form 

or 

and the right set contains all numbers of the form 

or 

You see, the left set gets the "same kinds" and the right set 
gets the "opposite kinds" of parts. Does this definition make 
any sense? 

B. Lemme see, it looks weird. Well, xY is supposed to be greater 
than its left part, so do we have 

This is like ... yeah, it's equivalent to 

A. That's it, the product of positive numbers must be positive! 
The other three conditions for xy to lie between its left and 
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right sets are essentially saying that 

(XR - X)(YR - y) > 0, 

(x - XL)(YR - y) > 0, 

(XR - X)(y - yL) > O. 

Okay, the definition looks sensible, although we haven't proved 

anything. 

B. Before we get carried away trying to prove the main laws about 

multiplication, I want to check out a few simple cases just to 

make sure. Let's see ... 

xy = yx; 

Oy = 0; 

ly = y. 

Those were all easy. 

A. Good, zero times infinity is zero. Another easy result is 

-(xy) = (-x)y. 

B. Right on. Look, here's a fun one: 

A. Hey, I've always wondered what half of infinity was. 

B. Half of infinity! ... Coming right up. 

!w == ({1,2,3,4, ... }, 

{w -l,w - 2,w - 3,w - 4, ... }). 

(T20) 

(T21) 

(T22) 

(T23) 

(T24) 

It's interesting to prove that !w + !w == w . ... Wow, here's 

another neat result: 

€w == 1. 
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Our infinitesimal number turns out to be the reciprocal of infin­
ity! 

A. While you were working that out, I was looking at multiplica­
tion in general. It looks a little freaky for pseudo-numbers-
I found a pseudo-number p for which ({ 1 }, 0) p is not like 
({O,1},0)p, even though ({1},0) and ({O,1},0) are both like 2. 
In spite of this difficulty, I applied your Big Picture method and 
I think it is possible to prove 

x(y + z) ::= xy + xz, 

x(yz) == (xy)z 

for arbitrary pseudo-numbers, and 

if x > x' and y > y', 

then (x - x')(y - y') > a 

(T25) 

(T26) 

(T27) 

for arbitrary numbers. It will follow that xy is a number when­
ever x and yare. 

B. Theorem (T27) can be used to show that 

if x::=y, then xz == yz (T28) 

for all numbers. So all of these calculations we've been making 
are perfectly rigorous. 

I guess that takes care of everything it says on the tablet. Ex­
cept the vague reference to "series, and quotients, and roots." 

A. Hmm ... What about division? ... I bet if x is between a 
and 1, it'll be possible to prove that 
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At least, this is how we got t, for x = !. Perhaps we'll be able 
to show that every nonzero number has a reciprocal, using some 
such method. 

B. Alice! Feast your eyes on this! 

Vw= ({1,2,3,4, ... }, f~,~,~,~, .. · }); 
V€= ({€,2€,3€,4€, ... }, {~,~,~,~, ... }). 

A. (falling into his arms) Bill! Every discovery leads to more, and 

more! 

B. (glancing at the sunset) There are infinitely many things yet 
to do . .. and only a finite amount of time ... 
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The reader may have guessed that this is not a true story. How­
ever, "J. H. W. H. Conway" does exist-he is Professor John 
Horton Conway of Cambridge University. The real Conway has 
established many remarkable results about these "extraordinal" 
numbers, besides what has been mentioned here. For example, 
every polynomial of odd degree, with arbitrary numbers as coef­
ficients, has a root. Also, every pseudo-number p corresponds to 
a position in a two-person game between players Left and Right, 
where the four relations 

p> 0, 
p=O, 

p< 0, 

p II 0 

correspond respectively to the four conditions 

Left wins, 
Second player wins, 

Right wins, 
First player wins 

starting at position p. The theory is still very much in its in­
fancy, and the reader may wish to play with some of the many 
unexplored topics: What can be said about logarithms? conti­
nuity? multiplicative properties of pseudo-numbers? generalized 
diophantine equations? etc. 
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POSTSCRIPT 

The late Hungarian mathematician Alfred Renyi composed three 
stimulating "Dialogues on Mathematics," which were published 
by Holden-Day of San Francisco in 1967. His first dialogue, set 
in ancient Greece about 440 B.C., features Socrates and gives a 
beautiful description of the nature of mathematics. The second, 
which supposedly takes place in 212 B.C., contains Archimedes's 
equally beautiful discussion of the applications of mathematics. 
Renyi's third dialogue is about mathematics and science, and we 
hear Galileo speaking to us from about A.D. 1600. 

I have prepared Surreal Numbers as a mathematical dialogue of 
the 1970s, emphasizing the nature of creative mathematical explo­
rations. Of course, I wrote this mostly for fun, and I hope that it 
will transmit some pleasure to its readers, but I must admit that 
I also had a serious purpose in the back of my mind. Namely, I 
wanted to provide some material that would help to overcome one 
of the most serious shortcomings in our present educational system, 
the lack of training for research work; there is comparatively little 
opportunity for students to experience how new mathematics is 
invented, until they reach graduate school. 

I decided that creativity can't be taught using a textbook, but 
that an "anti-text" such as this novelette might be useful. I there­
fore tried to write the exact opposite of Landau's Grundlagen der 
Analysis; my aim was to show how mathematics can be "taken out 
of the classroom and into life," and to urge readers to try their own 
hands at exploring abstract mathematical ideas. 

The best way to communicate the techniques of mathematical 
research is probably to present a detailed case study. Conway's 
recent approach to numbers struck me as the perfect vehicle for 
illustrating the important aspects of mathematical explorations, 
because it is a rich theory that is almost self-contained, yet with 
close ties to both algebra and analysis, and because it is still largely 
unexplored. 

In other words, my primary aim is not really to teach Conway's 
theory, it is to teach how one might go about developing such a 
theory. Therefore, as the two characters in this book gradually 
explore and build up Conway's number system, I have recorded 
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their false starts and frustrations as well as their good ideas and 
triumphs. I wanted to give a reasonably faithful portrayal of the 
important principles, techniques, joys, passions, and philosophy 
of mathematics, so I wrote the story as I was actually doing the 
research myself (using no outside sources except a vague memory 
of a lunchtime conversation I had had with John Conway almost a 
year earlier). 

I have intended this book primarily for college mathematics 
students at about the sophomore or junior level. Within a tradi­
tional math curriculum it can probably be used best either (a) as 
supplementary reading material for an "Introduction to Abstract 
Mathematics" course or a "Mathematical Logic" course; or (b) as 
the principal text in an undergraduate seminar intended to develop 
the students' abilities for doing independent work. 

Books that are used in classrooms are usually enhanced by 
exercises. So at the risk of destroying the purity of this "novel" 
approach, I have compiled a few suggestions for supplementary 
problems. When used with seminars, such exercises should 
preferably be brought up early in each class hour, for spontaneous 
class discussions, instead of being assigned as homework. 

1. After Chapter 3. What is "abstraction," and what is "general­
ization"? 

2. After Chapter 5. Assume that 9 is a function from numbers to 
numbers such that x ~ y implies g(x) ~ g(y). Define 

f(x) = (J(XL) U {g(x)}, f(XR)). 

Prove that f(x) ~ f(y) if and only if x ~ y. Then in the special 
case that g(x) is identically 0, evaluate f(x) for as many num­
bers as you can. [Note: After Chapter 12, this exercise makes 
sense also when "numbers" are replaced by "pseudo-numbers."] 

3. After Chapter 5. Let x and y be numbers whose left and right 
parts are "like" but not identical. Formally, let 
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JL: XL --t YL, 

gL: YL --t XL, 

fR: X R --t YR, 

gR: YR --t X R 



be functions such that h(xd == XL, h(XR) == XR, 9L(YL) == YL, 
9R(YR) == YR· Prove that X == y. [Alice and Bill did not real­
ize that this lemma was important in some of their investiga­
tions; they assumed it without proof. The lemma holds also for 
pseudo-numbers.] 

4. After Chapter 6. When we are developing the theory of Con­
way's numbers from these few axioms, is it legitimate to use 
the properties we already "know" about numbers in the proofs? 
(For example, is it okay to use subscripts like i - 1 and j + 1?) 

5. After Chapter 9. Find a complete formal proof of the general 
pattern after n days. [This problem makes an interesting ex­
ercise in the design of notations. There are many possibilities, 
and the students should strive to find a notation that makes a 
rigorous proof most understandable, in the sense that it matches 
Alice and Bill's intuitive informal proof.] 

6. After Chapter 9. Is there a simple formula telling the day on 
which a given binary number is created? 

7. After Chapter 10. Prove that X == Y implies -x == -yo 

8. After Chapter 12. Establish the value of x EB Y for as many 
x and Y as you can. 

9. After Chapter 12. Change rules (1) and (2), replacing ~ by < 
in all three places; and add a new rule: 

x<y if and only if x5.Y and Y $ x. 

Now develop the theory of Conway's numbers from scratch, 
using these definitions. [This question leads to a good review 
of the material in the first three chapters; the arguments have to 
be changed in several places. The major hurdle is to prove that 
x 5. x for all numbers; there is a fairly short proof, not easy to 
discover, which I prefer not to reveal here. The students should 
be encouraged to discover that the new < relation is not iden­
tical to Conway's, with respect to pseudo-numbers (although of 
course it is the same for all numbers). In the new situation, the 
law x 5. x does not always hold; and if 

x = ({({0},{0})},0), 
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we have x = 0 in Conway's system but x = 1 in the new one! 
Conway's definition has nicer properties but the new relation is 
instructive.] 

10. After Chapter 13. Show how to avoid Alice and Bill's circu­
larity problem another way, by eliminating III(z, ZL, y) and 
III( Z R, Z, x) from the requirements needed to prove II( x, y, z). 
In other words, prove directly that we can't have z + y ~ ZL + y 
for any ZL. 

11. After Chapter 14. Determine the "immediate neighborhood" of 
each real number during the first few days after N day. 

12. After Chapter 15. Construct the largest infinite numbers you 
can think of, and also the smallest positive infinitesimals. 

13. After Chapter 15. Does it suffice to restrict XL and XR to 
countable sets? [This question is difficult but it may lead to an 
interesting discussion. Instructors can prepare themselves by 
boning up on ordinal numbers.] 

14. Almost anywhere. What are the properties of the operation 
defined by 

x 0 y = (XL n YL, XR n YR)? 

[The class should discover that this is not min(x, y).] Many 
other operations are interesting to explore, for example when 
x 0 y is defined to be 

(XL 0 YL, XR U YR) 

or ((XL 0 y) U (x 0 Yd, XR U YR). 

15. After Chapter 16. If X is the set of all numbers, show that 
(X,0) is not equivalent to any number. [There are paradoxes 
in set theory unless care is taken. Strictly speaking, the class of 
all numbers isn't a set. Compare this problem with the "set of 
all sets" paradoxes.] 

16. After Chapter 16. Call x a generalized integer if 

x= ({x-l},{x+l}). 
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Show that generalized integers are closed under addition, sub­
traction, and multiplication. They include the usual integers n, 
as well as numbers like w ± n, ~w, etc. [This exercise is due to 
Simon Norton.] 

17. After Chapter 16. Call x a real number if -n < x < n for some 
(nongeneralized) integer n, and if 

x=: ({x-1,x-~,x-t, ... }, {x+1,x+~,x+t, ... }). 

Prove that the real numbers are closed under addition, subtrac­
tion, and multiplication, and that they are isomorphic to real 
numbers defined in more traditional ways. [This exercise and 
those that follow were suggested by John Conway.] 

18. After Chapter 16. Change rule (1), allowing (XL, X R) to be a 
number only when XL i XR and the following condition is 
satisfied: 

XL has a greatest element or is null if and only if 
XR has a least element or is null. 

Show that precisely the real numbers (no more, no less) are 
created in these circumstances. 

19. After Chapter 16. Find a pseudo-number p such that p + 
p =: ({O}, {O}). [This question is surprisingly difficult, and it 
leads to interesting subproblems.] 

20. After Chapter 15 or 16. The pseudo-number ({O}, {( {O}, {O})}) 
is > 0 and < x for all positive numbers x. Thus it is really 
infinitesimal! But ({O}, {({O}, {-I})}) is smaller yet. And any 
pseudo-number p > 0 is greater than ({O}, {( {O}, {-x})}) for 
some suitably large number x. 

21. After Chapter 16. For any number x define 

W X = ({O} U {nwXL I XL E XL, n = 1,2,3, ... }, 

{2: W XR I XR E XR, n = 1,2,3, ... } ). 
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22. After Chapter 16. Explore the properties of the symmetric 
pseudo-numbers S such that 

if and only if 

In other words, the elements of S have identical left and right 
sets, and so do the elements of their left and right parts, pro­
ceding recursively. Show that S is closed under addition, sub­
traction, and multiplication. Explore further properties of S; 
for example, how many unlike elements of S are created on each 
day, and is their arithmetic interesting in any way? [This open­
ended problem is perhaps the best on the entire list, because an 
extremely rich theory is lurking here.] 

I will send hints to the solutions of exercises 9, 19, and 22 to any 
bona fide teachers who request them by writing to me at Stanford 
University. 

Now I would like to close this postscript with some suggestions 
addressed specifically to teachers who will be leading a seminar 
based on this book. (All other people should please stop reading, 
and close the book at once.) 

Dear Teacher: Many topics for class discussion are implicit in 
the story. The first few chapters will not take much time, but be­
fore long you may well be covering less than one chapter per class 
hour. It may be a good idea for everyone to skim the whole book 
very quickly at first, because the developments at the end are what 
really make the beginning interesting. One thing to stress contin­
ually is to ask the students to "distill off" the important general 
principles, the modus operandi, of the characters. Why do they ap­
proach the problem as they do, and what is good or bad about their 
approaches? How does Alice's "wisdom" differ from Bill's? (Their 
personalities are distinctly different.) Another ground rule for the 
students is that they should check over the mathematical details 
that often are only hinted at; this is the only way that a reader can 
really learn what is going on in the book. Students should prefer­
ably tackle problems first by themselves before reading on. The 
appearance of an ellipsis " ... " often means that the characters were 
thinking (or writing), and the reader should do the same. 
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When holding class discussions of exercises such as those men­
tioned here, I have found it a good policy to limit the number of 
times each person is allowed to speak up. This rule keeps the lo­
quacious people from hogging the floor and ruining the discussion; 
everybody gets to participate. 

Another recommendation is that the course end with a three-
or four-week assignment, to write a term paper that explores some 
topic not explicitly worked out in this book. For example, sev-
eral possible topics are indicated in the open-ended exercises listed 
above. Perhaps the students can do their research in groups of two. 
The students should also be told that they will be graded on their 
English expository style as well as on the mathematical content; say 
50-50. They must be told that a math term paper should not read 
like a typical homework paper. The latter is generally a collection 
of facts in tabular form, without motivation, etc., and the grader is 
supposed to recognize it as a proof; the former is in prose style like 
in math textbooks. Students can also gain experience in writing by 
taking turns preparing resumes of what transpires in class; then all 
the other students will be able to have a record of the discussions 
without being distracted by taking notes themselves. 

In my opinion the two greatest weaknesses in our present math­
ematics education are the lack of training in creative thinking and 
the lack of practice in technical writing. I hope that the use of this 
little book can help make up for both of these deficiencies. 

Stanford, California 
May 1974 

D.E.K. 

Detection is, or ought to be, an exact science, 
and should be treated in the same cold and unemotional manner. 

You have attempted to tinge it with romanticism, 
which produces much the same effect as if you worked 

a love-story or an elopement into the fifth proposition of Euclid. 

- SHERLOCK HOLMES, in The Sign of The Four (1888) 
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